论文标题

部分可观测时空混沌系统的无模型预测

Stance Detection and Open Research Avenues

论文作者

Küçük, Dilek, Can, Fazli

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This tutorial aims to cover the state-of-the-art on stance detection and address open research avenues for interested researchers and practitioners. Stance detection is a recent research topic where the stance towards a given target or target set is determined based on the given content and there are significant application opportunities of stance detection in various domains. The tutorial comprises two parts where the first part outlines the fundamental concepts, problems, approaches, and resources of stance detection, while the second part covers open research avenues and application areas of stance detection. The tutorial will be a useful guide for researchers and practitioners of stance detection, social media analysis, information retrieval, and natural language processing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源