论文标题

部分可观测时空混沌系统的无模型预测

Spitzer/IRS full spectral modeling to characterize mineralogical properties of silicate dust in heavily obscured AGNs

论文作者

Tsuchikawa, T., Kaneda, H., Oyabu, S., Kokusho, T., Kobayashi, H., Toba, Y.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Mid-Infrared (IR) silicate dust bands observed in heavily obscured active galactic nuclei (AGNs) include information on the mineralogical properties of silicate dust. We aim to investigate the mineralogical picture of the circumnuclear region of heavily obscured AGNs to reveal obscured AGN activities through the picture. In our previous study Tsuchikawa et al. (2021), we investigated the properties of silicate dust in heavily obscured AGNs focusing on the mineralogical composition and the crystallinity with Spitzer/IRS 5.3-12 micron spectra. In this study, we model the full-range Spitzer/IRS 5-30 micron spectra of 98 heavily obscured AGNs using a one-dimensional radiative transfer calculation with four dust species in order to evaluate wider ranges of the properties of silicate dust more reliably. Comparing fitting results between four dust models with a different size and porosity, 95 out of the 98 galaxies prefer a porous silicate dust model without micron-sized large grains. The pyroxene mass fraction and the crystallinity are overall consistent with but significantly different from the previous results for the individual galaxies. The pyroxene-poor composition, small dust size and high porosity are similar to newly formed dust around mass-loss stars as seen in our Galaxy, which presumably originates from the recent circumnuclear starburst activity. The high crystallinity on average suggests dust processing induced by AGN activities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源