论文标题

部分可观测时空混沌系统的无模型预测

Uniform shear flow via the Boltzmann equation with hard potentials

论文作者

Duan, Renjun, Liu, Shuangqian

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The motion of rarefied gases for uniform shear flow at the kinetic level is governed by the spatially homogeneous Boltzmann equation with a deformation force. In the paper we study the corresponding Cauchy problem with initial data of finite mass and energy for the collision kernel in case of hard potentials $0<γ\leq 1$ under the cutoff assumption. We prove the global existence and large time behavior of solutions provided that the force strength $α>0$ is small enough. In particular, when the initial perturbation is of order $α^m$ for $m>2$, we make a rigorous justification of the uniform-in-time asymptotic expansion of solutions up to order $α^2$ under a homoenergetic self-similar scaling that can capture the increase of temperature $θ(t)\sim (1+γ\varrho_0α^2 t)^{2/γ}$ when time tends to infinity, where $\varrho_0>0$ is a strictly positive constant depending only on the deformation force and the linearized collision operator. Specifically, we establish $$ θ^{3/2}(t)F(t,θ^{1/2}(t)v)= μ+α\sqrtμ G_1(t,v)+α^2 \sqrtμG_2(t,v)+O(1)α^m(1+γ\varrho_0α^2 t)^{-2} $$ as $t\to\infty$, where $μ$ is a global Maxwellian and $G_1,G_2$ are microscopic bounded functions that can be explicitly determined and decay in time as $G_1\sim (1+γ\varrho_0α^2 t)^{-1}$ and $G_2\sim (1+γ\varrho_0α^2 t)^{-2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源