论文标题
部分可观测时空混沌系统的无模型预测
KaRMMa 2.0 -- Kappa Reconstruction for Mass Mapping
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We present KaRMMa 2.0, an updated version of the mass map reconstruction code introduced in Fiedorowicz et al. (2022). KaRMMa is a full-sky Bayesian algorithm for reconstructing weak lensing mass maps from shear data. It forward-models the convergence field as a realization of a lognormal field. The corresponding shear map is calculated using the standard Kaiser-Squires transformation, and compared to observations at the field level. The posterior distribution of maps given the shear data is sampled using Hamiltonian Monte Carlo chains. Our work improves on the original algorithm by making it numerically efficient, enabling full-sky reconstructions at $\approx$ 7 arcmin resolution with modest computational resources. These gains are made with no loss in accuracy or precision relative to KaRMMa 1.0. We compare the KaRMMa 2.0 posteriors against simulations across a variety of summary statistics (one-point function, two-point functions, and peak/void counts) to demonstrate our updated algorithm provides an accurate reconstruction of the convergence field at mildly non-linear scales. Unsurprisingly, the lognormal model fails as we approach non-linear scales ($\ell \gtrsim 200$), which in turn biases the map posteriors. These biases are at the 2% level in the recovered power spectrum, and at the 5% to 15% level for other statistics, depending on the resolution.