论文标题
钻石中的天然量子线脱位
Dislocations as natural quantum wires in Diamond
论文作者
论文摘要
我们使用混合交换相关功能研究了钻石中钻石中滑动位错的电子特性,并发现原子级位错状态核心态核状态产生了典型的一维(1D)带结构,即自然量子线。核心状态的位置和特征随局部结构差异很大,在局部结构中,带有悬空键的混合位错表现出具有特征在于状态的特征1D密度($ 1/\ sqrt {e})$的1D金属带。这种一维费米气体在空间上定位于沿位错芯的单个原子直径轨道链。当重建核心内的悬挂键时,一维金属带消失了。相反,钻石中的纯边缘位错揭示了一个1D半导体,直接带隙为3.0 eV。这些计算为与钻石位错相关的蓝色发光带长期观察提供了可能的解释。这为使用脱位作为1D量子相的门打开了具有功能(电子和光学)特性的1D量子相。
We study the electronic properties of the glide set of dislocations in diamond from first principles using hybrid exchange correlation functionals and find that the atomic-scale dislocation core states give rise to a prototypical one-dimensional (1D) band structure, i.e. natural quantum wires. The position and character of the core states varies strongly with local structure, where mixed dislocations with dangling bonds exhibit a 1D metallic band with a characteristic 1D density of states ($1/\sqrt{E})$. This 1D Fermi gas is spatially localized to single atomic diameter orbital chain along the dislocation core. When the dangling bonds within the core are reconstructed, the 1D metallic band disappears. In contrast, pure edge dislocations in diamond reveal a 1D semiconductor with a direct band gap of 3.0 eV. These calculations provide a possible explanation to the long standing observation of a blue luminescence band correlated with dislocations in diamond. This opens the door to using dislocations as 1D quantum phases with functional (electronic and optical) properties arising from the atomic-scale core states.