论文标题

基于任务的神经网络评估:基于人类观察者信号检测的评估无效的MRI重建

Task-Based Assessment for Neural Networks: Evaluating Undersampled MRI Reconstructions based on Human Observer Signal Detection

论文作者

Herman, Joshua D., Roca, Rachel E., O'Neill, Alexandra G., Wong, Marcus L., Lingala, Sajan G., Pineda, Angel R.

论文摘要

最近的研究探索了使用神经网络重建不采样的磁共振成像(MRI)数据。由于重建图像中工件的复杂性,因此需要开发基于任务的图像质量方法。评估图像质量(如标准化均方根误差(NRMSE)和结构相似性(SSIM))等图像质量的通用指标是全局指标,它们平均消除了图像中微妙特征的影响。使用图像质量的度量,该图像质量包含针对特定任务的微妙信号允许进行图像质量评估,该评估在局部评估了不足采样对信号的影响。我们使用U-NET重建了2倍,3x,4x和5x倍1D底采样率的不采样不采样。对500和4000图像训练集进行了交叉验证,具有结构相似性(SSIM)和均方误差(MSE)损失。进行了两个替代强制选择(2-AFC)观察者研究,以检测具有4000张图像训练集的图像中的微妙信号(小模糊磁盘)。我们发现,对于损失功能和训练集的大小,在2-AFC研究中的人类观察者的表现导致了2倍不足采样的选择,但是SSIM和NRMSE导致了3倍不足的采样选择。对于此任务,与人类观察者在发现微妙的病变时相比,SSIM和NRMSE高估了使用U-NET的可实现的不足采样。

Recent research has explored using neural networks to reconstruct undersampled magnetic resonance imaging (MRI) data. Because of the complexity of the artifacts in the reconstructed images, there is a need to develop task-based approaches of image quality. Common metrics for evaluating image quality like the normalized root mean squared error (NRMSE) and structural similarity (SSIM) are global metrics which average out impact of subtle features in the images. Using measures of image quality which incorporate a subtle signal for a specific task allow for image quality assessment which locally evaluates the effect of undersampling on a signal. We used a U-Net to reconstruct under-sampled images with 2x, 3x, 4x and 5x fold 1-D undersampling rates. Cross validation was performed for a 500 and a 4000 image training set with both structural similarity (SSIM) and mean squared error (MSE) losses. A two alternative forced choice (2-AFC) observer study was carried out for detecting a subtle signal (small blurred disk) from images with the 4000 image training set. We found that for both loss functions and training set sizes, the human observer performance on the 2-AFC studies led to a choice of a 2x undersampling but the SSIM and NRMSE led to a choice of a 3x undersampling. For this task, SSIM and NRMSE led to an overestimate of the achievable undersampling using a U-Net before a steep loss of image quality when compared to the performance of human observers in the detection of a subtle lesion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源