论文标题

Los Alamos的中质量和重核的核数据活性

Nuclear data activities for medium mass and heavy nuclei at Los Alamos

论文作者

Mumpower, M. R., Sprouse, T. M, Kawano, T., Herman, M. W., Lovell, A. E., Misch, G. W., Neudecker, D., Sasaki, H., Stetcu, I., Talou, P.

论文摘要

核数据对于从库存管理到尖端科学研究的许多现代应用至关重要。这些追求的核心是核模型以及数据同化和传播的强大管道。我们总结了Los Alamos正在进行的核数据工作的一小部分,用于中等质量到重核。我们从Nexus框架的概述开始,并展示其一个模块如何使用贝叶斯技术用于模型参数优化。数学框架在确定模型参数及其相关的相关性时提供了不同测量数据的组合。它还具有能够量化数据异常值的优点。我们通过突出显示最近评估的239-PU横截面来体现此过程的功能。我们进一步展示了工具和管道的成功,涵盖了将最新的核模型和数据纳入天体物理模拟中获得的见解,这是R-Process元素(FIRE)协作中裂变的一部分。

Nuclear data is critical for many modern applications from stockpile stewardship to cutting edge scientific research. Central to these pursuits is a robust pipeline for nuclear modeling as well as data assimilation and dissemination. We summarize a small portion of the ongoing nuclear data efforts at Los Alamos for medium mass to heavy nuclei. We begin with an overview of the NEXUS framework and show how one of its modules can be used for model parameter optimization using Bayesian techniques. The mathematical framework affords the combination of different measured data in determining model parameters and their associated correlations. It also has the advantage of being able to quantify outliers in data. We exemplify the power of this procedure by highlighting the recently evaluated 239-Pu cross section. We further showcase the success of our tools and pipeline by covering the insight gained from incorporating the latest nuclear modeling and data in astrophysical simulations as part of the Fission In R-process Elements (FIRE) collaboration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源