论文标题

$ ADS_2 $上的边界条件插值

Interpolating Boundary Conditions on $AdS_2$

论文作者

Garay, Anthonny F. Canazas, Correa, Diego H., Faraggi, Alberto, Silva, Guillermo A.

论文摘要

我们考虑了在$ ads_2 $上的两个实例的边界条件实例,该实例在$ ads_2 $上插入了dirichlet和neumann案件之间的插值,同时保留了量表的不变性。鉴于其非本地性质,在整个$ sl(2; \ mathds {r})$中评估不变性。为了进一步阐明这个问题,我们使用上述边界条件对全息2和4分相关函数进行计算,并研究其转换特性。具体地,是由ABJM理论中威尔逊循环的一些多参数家族的双重描述的动机,我们查看围绕$ ads_2 \ subset ads_4 \ times \ times \ times \ times \ times \ mathbb {cp}^3 $ Worldsheet的兴奋,从而获得了$ 1 $ -DIMESSERTECTECTERTER的相关人员Chern-Simons-Matter理论在强耦合方面。在分析的两种类型的边界条件中,只有一种导致共形初步的预期功能结构。另一个在翻译和恢复下展示了协方差,但不在特殊的保形转换下。

We consider two instances of boundary conditions for massless scalars on $AdS_2$ that interpolate between the Dirichlet and Neumann cases while preserving scale invariance. Assessing invariance under the full $SL(2;\mathds{R})$ conformal group is not immediate given their non-local nature. To further clarify this issue, we compute holographically 2- and 4-point correlation functions using the aforementioned boundary conditions and study their transformation properties. Concretely, motivated by the dual description of some multi-parametric families of Wilson loops in ABJM theory, we look at the excitations of an open string around an $AdS_2\subset AdS_4\times\mathbb{CP}^3$ worldsheet, thus obtaining correlators of operators inserted along a $1$-dimensional defect in ${\cal N}=6$ super Chern-Simons-matter theory at strong coupling. Of the two types of boundary conditions analyzed, only one leads to the expected functional structure for conformal primaries; the other exhibits covariance under translations and rescalings but not under special conformal transformations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源