论文标题
边缘爆炸图的广义图兰号码
Generalized Turan number for the edge blow-up graph
论文作者
论文摘要
令$ h $为图表,$ p $为整数。 $ h $ $ h $的边缘爆炸$ h^p $是从$ h $中替换$ k_p $的每个边缘获得的图表,其中这些集团的新顶点都不同。令$ c_k $和$ p_k $分别表示长度$ k $的循环和路径。在本文中,我们找到了$ ex(n,k_3,c_3^3)$的尖锐上限,以及$ ex(n,k_3,p_3^3)$的确切值,并确定达到这些界限的图。
Let $H$ be a graph and $p$ be an integer. The edge blow-up $H^p$ of $H$ is the graph obtained from replacing each edge in $H$ by a copy of $K_p$ where the new vertices of the cliques are all distinct. Let $C_k$ and $P_k$ denote the cycle and path of length $k$, respectively. In this paper, we find sharp upper bounds for $ex(n,K_3,C_3^3)$ and the exact value for $ ex(n,K_3,P_3^3)$ and determine the graphs attaining these bounds.