论文标题
通过高能粒子湍流稳定来预测SPARC中改善限制的预测
Predictions of improved confinement in SPARC via energetic particle turbulence stabilization
论文作者
论文摘要
高温超导技术的最新进展导致了SPARC的设计和构建,SPARC是一种紧凑的Tokamak设备,预计将达到血浆,并具有高达$ 25 $的外部离子Cyclotron resonant加热(ICRH)功率。 This manuscript presents local (flux-tube) and radially global gyrokinetic GENE (Jenko et al 2000 Phys. Plasmas {\bf 7} 1904) simulations for a reduced-field and current H-mode SPARC scenario showing that supra-thermal particles - generated via ICRH - strongly suppress ion-scale turbulent transport by triggering a fast ion-induced anomalous transport障碍(F-ATB)。触发机理被确定为快速粒子种群和等离子体微观构度之间的波颗粒谐振相互作用(Di Siena等人2021Phys。Rev.Lett。{\ bf 125} 025002)。通过对热离子采用不同曲线的一系列全球模拟,我们表明,通过利用这种快速离子稳定机制,可以实质上增强了这种SPARC场景的融合增益。还提出了一项研究,以进一步优化能量粒子谱,因此可能在实验上导致更明显的融合增益。
The recent progress in high-temperature superconductor technologies has led to the design and construction of SPARC, a compact tokamak device expected to reach plasma breakeven with up to $25$MW of external ion cyclotron resonant heating (ICRH) power. This manuscript presents local (flux-tube) and radially global gyrokinetic GENE (Jenko et al 2000 Phys. Plasmas {\bf 7} 1904) simulations for a reduced-field and current H-mode SPARC scenario showing that supra-thermal particles - generated via ICRH - strongly suppress ion-scale turbulent transport by triggering a fast ion-induced anomalous transport barrier (F-ATB). The trigger mechanism is identified as a wave-particle resonant interaction between the fast particle population and plasma micro-instabilities (Di Siena et al 2021 Phys. Rev. Lett. {\bf 125} 025002). By performing a series of global simulations employing different profiles for the thermal ions, we show that the fusion gain of this SPARC scenario could be substantially enhanced up to $\sim 80\%$ by exploiting this fast ion stabilizing mechanism. A study is also presented to further optimize the energetic particle profiles, thus possibly leading experimentally to an even more significant fusion gain.