论文标题

汉密尔顿的完成和稀疏随机图的路径覆盖数

Hamilton completion and the path cover number of sparse random graphs

论文作者

Alon, Yahav, Krivelevich, Michael

论文摘要

我们证明,每$ \ varepsilon> 0 $都有$ C_0 $,这样,如果$ g \ sim g(n,c/n)$,$ c \ ge c_0 $,那么使用高概率$ g $可以由$ $ g $覆盖,最多可以覆盖$(1+ \ varepsilon)\ cdot \ cdot \ cdot \ frac \ frac \ frac \ frac {1 n} n} n} c.2} ce^2} ce^c.路径本质上是紧密的。这相当于表明,只有高概率,最多最多$(1+ \ varepsilon)\ cdot \ frac {1} {2} ce^{ - c} \ cdot n $ edges可以添加到$ g $中以创建汉密尔顿图。

We prove that for every $\varepsilon > 0$ there is $c_0$ such that if $G\sim G(n,c/n)$, $c\ge c_0$, then with high probability $G$ can be covered by at most $(1+\varepsilon)\cdot \frac{1}{2}ce^{-c} \cdot n$ vertex disjoint paths, which is essentially tight. This is equivalent to showing that, with high probability, at most $(1+\varepsilon)\cdot \frac{1}{2}ce^{-c} \cdot n$ edges can be added to $G$ to create a Hamiltonian graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源