论文标题
通过最大化下降的概率,局部贝叶斯优化
Local Bayesian optimization via maximizing probability of descent
论文作者
论文摘要
本地优化通过避开全球探索搜索空间的需求,为昂贵的高维黑盒优化提供了一种有希望的方法。对于无法直接评估梯度的目标函数,贝叶斯优化提供了一种解决方案 - 我们构建了目标的概率模型,设计一项政策,以了解当前位置的梯度,并使用结果信息来浏览目标格局。以前的工作通过最大程度地减少梯度估计值的方差,然后沿预期梯度的方向移动来实现这一方案。在本文中,我们重新检查并完善了这种方法。我们证明,令人惊讶的是,梯度的期望值并不总是最大化下降概率的方向,实际上,这些方向可能几乎是正交的。然后,该观察结果激发了一种优雅的优化方案,试图在最大的下降方向移动时最大化下降的可能性。关于合成目标和现实世界目标的实验表明,我们的方法的表现优于此优化方案的先前实现,并且与其他更复杂的基线相比,我们的方法具有竞争力。
Local optimization presents a promising approach to expensive, high-dimensional black-box optimization by sidestepping the need to globally explore the search space. For objective functions whose gradient cannot be evaluated directly, Bayesian optimization offers one solution -- we construct a probabilistic model of the objective, design a policy to learn about the gradient at the current location, and use the resulting information to navigate the objective landscape. Previous work has realized this scheme by minimizing the variance in the estimate of the gradient, then moving in the direction of the expected gradient. In this paper, we re-examine and refine this approach. We demonstrate that, surprisingly, the expected value of the gradient is not always the direction maximizing the probability of descent, and in fact, these directions may be nearly orthogonal. This observation then inspires an elegant optimization scheme seeking to maximize the probability of descent while moving in the direction of most-probable descent. Experiments on both synthetic and real-world objectives show that our method outperforms previous realizations of this optimization scheme and is competitive against other, significantly more complicated baselines.