论文标题

当拓扑与莫特尼斯交织在一起时,1/4是新的1/2

1/4 is the new 1/2 when topology is intertwined with Mottness

论文作者

Mai, Peizhi, Zhao, Jinchao, Feldman, Benjamin E., Phillips, Philip W.

论文摘要

在非相互作用的系统中,非平凡拓扑结构的频段严格在半填充时出现,并表现出量子异常的大厅或自旋大厅效应。在这里,我们使用确定性量子蒙特卡洛(Monte Carlo)和一个可以解决的强烈相互作用模型显示,这些拓扑状态现在转移到四分之一填充。拓扑莫特绝缘子是根本原因。自旋敏感性的峰值与可能的铁磁状态在$ t = 0 $一致。这种磁性的发作将将量子自旋大厅转换为量子异常效果。虽然这种对称性破裂的阶段通常伴随着一个间隙,但我们发现相互作用强度必须超过临界值才能发生。因此,我们预测拓扑可以在无间隙相中获得,但只有在分散带中存在相互作用的情况下才能获得。这些结果解释了Moire Systems最近出现的季度量子异常霍尔效应。

In non-interacting systems, bands from non-trivial topology emerge strictly at half-filling and exhibit either the quantum anomalous Hall or spin Hall effects. Here we show using determinantal quantum Monte Carlo and an exactly solvable strongly interacting model that these topological states now shift to quarter filling. A topological Mott insulator is the underlying cause. The peak in the spin susceptibility is consistent with a possible ferromagnetic state at $T=0$. The onset of such magnetism would convert the quantum spin Hall to a quantum anomalous Hall effect. While such a symmetry-broken phase typically is accompanied by a gap, we find that the interaction strength must exceed a critical value for this to occur. Hence, we predict that topology can obtain in a gapless phase but only in the presence of interactions in dispersive bands. These results explain the recent quarter-filled quantum anomalous Hall effects seen in moire systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源