论文标题
牛顿后精确的脉冲星定时阵列信号由灵感偏心二进制诱导:准确性,计算成本和单脉冲搜索
Post-Newtonian-accurate pulsar timing array signals induced by inspiralling eccentric binaries: accuracy, computational cost, and single-pulsar search
论文作者
论文摘要
Pulsar定时阵列(PTA)实验预计将对沿偏心轨道的单个超级黑洞二进制二进制(SMBHB)发出的重力波(GWS)敏感。我们比较了相对论偏心SMBHB引起的计算PTA信号的不同方法的计算成本,即近似分析表达式,傅立叶串联膨胀,循环后扩展和数值整合。我们表明,评估PTA信号的最快方法是使用近似分析表达式,该表达式的计算速度比替代方法可提高约50倍。我们通过使用对PTA信号有效的不匹配度量来研究近似分析表达式的准确性。我们表明,该方法在PTA实验感兴趣的二元参数空间区域内是准确的。我们引入了一种基于样条的方法,以进一步加速窄带PTA数据集的PTA信号评估。在GWECC.JL软件包中实现了计算偏心SMBHB诱导的PTA信号的有效方法,并且可以从流行的Enterprise软件包中很容易访问,以在PTA数据集中搜索此类信号。此外,我们通过使用简化的表达式在PSR J1909-3744的12。5年Nanograv窄带数据集中执行单杆搜索,简化了单脉冲搜索情况的偏心SMBHB PTA信号表达,并通过在12。5年的Nanograv窄带数据集中进行单杆人搜索来证明我们的计算有效方法。这些结果对于在大型PTA数据集中搜索偏心SMBHB至关重要。
Pulsar Timing Array (PTA) experiments are expected to be sensitive to gravitational waves (GWs) emitted by individual supermassive black hole binaries (SMBHBs) inspiralling along eccentric orbits. We compare the computational cost of different methods of computing the PTA signals induced by relativistic eccentric SMBHBs, namely approximate analytic expressions, Fourier series expansion, post-circular expansion, and numerical integration. We show that the fastest method for evaluating PTA signals is by using the approximate analytic expressions, which provides up to ~50 times improvement in computational speed over the alternative methods. We investigate the accuracy of the approximate analytic expressions by employing a mismatch metric valid for PTA signals. We show that this method is accurate within the region of the binary parameter space that is of interest to PTA experiments. We introduce a spline-based method to further accelerate the PTA signal evaluations for narrowband PTA datasets. The efficient methods for computing the eccentric SMBHB-induced PTA signals were implemented in the GWecc.jl package and can be readily accessed from the popular ENTERPRISE package to search for such signals in PTA datasets. Further, we simplify the eccentric SMBHB PTA signal expression for the case of a single-pulsar search and demonstrate our computationally efficient methods by performing a single-pulsar search in the 12.5-year NANOGrav narrowband dataset of PSR J1909-3744 using the simplified expression. These results will be crucial for searching for eccentric SMBHBs in large PTA datasets.