论文标题

最大程度地减少高级张量的低排名模型:硬度,跨度,紧密放松和应用

Minimizing low-rank models of high-order tensors: Hardness, span, tight relaxation, and applications

论文作者

Sidiropoulos, Nicholas D., Karakasis, Paris, Konar, Aritra

论文摘要

我们考虑找到通过其等级分解指定的订单N张量最小或最大的进入的问题。以不同的方式说明,我们得到了n组的R维向量,我们希望从每个集合中选择一个向量,以使所选矢量的Hadamard乘积的总和最小化或最大化。我们表明,这种基本张量问题对于任何张量级均高于1的张量,而在排名一的情况下可以解决多项式时间。我们还提出了一个持续的放松,并证明了任何等级都很紧张。对于低调等级,提出的持续重新重新制定与低复杂性梯度的优化相提并论,我们提出了一套基于梯度的优化算法,从预测的梯度下降,Frank-Wolfe,弗兰克 - 沃尔夫或放松约束的明确参数化。我们还表明,无论使用哪种多层张量模型代表感兴趣的张量,包括Tucker,HosVD/MLSVD,Tensor Train或Tensor环,我们的核心结果仍然有效。接下来,我们将可以提出的问题类别视为感兴趣问题的特殊情况。我们表明,该类包括分区问题(因此,通过多项式时间转换),整数最小二乘,整数线性编程,整数二次编程,符号检索(一种特殊的混合整数编程 /相位限制性版本)以及最大的混合整数编程 /限制性版本以及最大的可能性分析了均值的模可能性。我们在许多硬问题上展示了有希望的实验结果,包括在解码低密度均衡检查代码和一般奇偶校验检查代码方面的最先进性能。

We consider the problem of finding the smallest or largest entry of a tensor of order N that is specified via its rank decomposition. Stated in a different way, we are given N sets of R-dimensional vectors and we wish to select one vector from each set such that the sum of the Hadamard product of the selected vectors is minimized or maximized. We show that this fundamental tensor problem is NP-hard for any tensor rank higher than one, and polynomial-time solvable in the rank-one case. We also propose a continuous relaxation and prove that it is tight for any rank. For low-enough ranks, the proposed continuous reformulation is amenable to low-complexity gradient-based optimization, and we propose a suite of gradient-based optimization algorithms drawing from projected gradient descent, Frank-Wolfe, or explicit parametrization of the relaxed constraints. We also show that our core results remain valid no matter what kind of polyadic tensor model is used to represent the tensor of interest, including Tucker, HOSVD/MLSVD, tensor train, or tensor ring. Next, we consider the class of problems that can be posed as special instances of the problem of interest. We show that this class includes the partition problem (and thus all NP-complete problems via polynomial-time transformation), integer least squares, integer linear programming, integer quadratic programming, sign retrieval (a special kind of mixed integer programming / restricted version of phase retrieval), and maximum likelihood decoding of parity check codes. We demonstrate promising experimental results on a number of hard problems, including state-of-art performance in decoding low density parity check codes and general parity check codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源