论文标题
在扰动$ λϕ^4 $理论中的压力调节状态的ANEC
ANEC on stress-tensor states in perturbative $λϕ^4$ theory
论文作者
论文摘要
我们在扰动$λ\,ϕ^4 $和一般的时空维度上产生的动量特征态和一般的时空维度,评估了平均零能条件(ANEC)。我们首先在$λ$中以二阶计算应力调整状态的规范;作为推导的副产品,我们在此顺序获得应力张量2分函数的完整表达式。然后,我们将ANEC期望值计算为$λ$的第一阶,这也取决于应力探测器改进项$ξ$的耦合。我们在扰动理论中研究了从ANEC和一级统一性的这些耦合的界限。在耦合空间的某些区域,这些边界比单位性强。
We evaluate the Average Null Energy Condition (ANEC) on momentum eigenstates generated by the stress tensor in perturbative $λ\, ϕ^4$ and general spacetime dimension. We first compute the norm of the stress-tensor state at second order in $λ$; as a by-product of the derivation we obtain the full expression for the stress tensor 2-point function at this order. We then compute the ANEC expectation value to first order in $λ$, which also depends on the coupling of the stress-tensor improvement term $ξ$. We study the bounds on these couplings that follow from the ANEC and unitarity at first order in perturbation theory. These bounds are stronger than unitarity in some regions of coupling space.