论文标题

随机复合物,有自由互动

Random complexes with free involution

论文作者

Frick, Florian, Newman, Andrew

论文摘要

我们引入了一个新的模型,用于随机简单络合物,该模型具有高概率,生成了具有简单连接双盖的复合物。因此,我们开发了一个使用基本组$ \ mathbb {z}/2 \ mathbb {z} $的随机简单复合物的模型。我们建立了有关这些复合物的典型渐近拓扑结构的结果。结果,我们给出了尺寸$ d $的界限,以使$ \ mathbb {z}/2 \ mathbb {z} $ - 从双层盖到$ \ mathbb {r}^d $具有较高可能性的Zeros,从而建立了随机的borsuk-ulam theorem。我们将其应用于erdős--rényi随机图中的成对的非粘合物簇的结构结果。

We introduce a new model for random simplicial complexes which with high probability generates a complex that has a simply-connected double cover. Hence we develop a model for random simplicial complexes with fundamental group $\mathbb{Z}/2\mathbb{Z}$. We establish results about the typical asymptotic topology of these complexes. As a consequence we give bounds for the dimension $d$ such that $\mathbb{Z}/2\mathbb{Z}$-equivariant maps from the double cover to $\mathbb{R}^d$ have zeros with high probability, thus establishing a random Borsuk--Ulam theorem. We apply this to derive a structural result for pairs of non-adjacent cliques in Erdős--Rényi random graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源