论文标题
在受约束的玻色 - 哈伯德模型中的分形小luttinger液体和超氧
Fractonic Luttinger Liquids and Supersolids in a Constrained Bose-Hubbard Model
论文作者
论文摘要
具有分形式约束的量子多体系统被广泛猜想,以表现出非常规物质的非常规的低能阶段。在这项工作中,我们证明了在一个维度上保存偶极子刺的基础状态中存在各种外来量子相的存在。对于整数玻色子填充物,我们将系统映射到微观局部偶极子的模型,这些偶极子是分形成的复合材料。我们应用了低能场理论和大规模张量网络模拟的组合,以证明偶极子Luttinger液相的出现。在非全能填充物上,我们的数值方法显示了一个量子Lifshitz模型描述的有趣的可压缩状态,在该模型中,电荷密度波浪秩序与偶极子长距离顺序和超流体 - a dipole supersolid'共存。尽管这种超olid状态最终可能不稳定,而在热力学极限下的晶格效应,但其数值鲁棒性是显着的。我们讨论结果的潜在实验含义。
Quantum many-body systems with fracton constraints are widely conjectured to exhibit unconventional low-energy phases of matter. In this work, we demonstrate the existence of a variety of such exotic quantum phases in the ground states of a dipole-moment conserving Bose-Hubbard model in one dimension. For integer boson fillings, we perform a mapping of the system to a model of microscopic local dipoles, which are composites of fractons. We apply a combination of low-energy field theory and large-scale tensor network simulations to demonstrate the emergence of a dipole Luttinger liquid phase. At non-integer fillings our numerical approach shows an intriguing compressible state described by a quantum Lifshitz model in which charge density-wave order coexists with dipole long-range order and superfluidity - a `dipole supersolid'. While this supersolid state may eventually be unstable against lattice effects in the thermodynamic limit, its numerical robustness is remarkable. We discuss potential experimental implications of our results.