论文标题
垂直联合线性上下文匪徒
Vertical Federated Linear Contextual Bandits
论文作者
论文摘要
在本文中,我们研究了一个新的问题,即在垂直联合环境中构建上下文匪徒,即,上下文信息在不同部门垂直分布。在研究界,这个问题在很大程度上尚未得到探索。为此,我们仔细设计了一种定制的加密方案,名为Orthoconal矩阵掩盖机制(O3M),用于加密本地上下文信息,同时避免昂贵的常规加密技术。我们进一步将机制应用于两种常用的匪徒算法,linucb和lints,并在垂直联合环境下实例化了两个实用协议,以在线推荐。所提出的协议可以完美地恢复集中式强盗算法的服务质量,同时达到令人满意的运行时效率,从理论上讲,这在本文中得到了证明和分析。通过对合成数据集进行广泛的实验,我们在隐私保护和建议性能方面展示了所提出方法的优越性。
In this paper, we investigate a novel problem of building contextual bandits in the vertical federated setting, i.e., contextual information is vertically distributed over different departments. This problem remains largely unexplored in the research community. To this end, we carefully design a customized encryption scheme named orthogonal matrix-based mask mechanism(O3M) for encrypting local contextual information while avoiding expensive conventional cryptographic techniques. We further apply the mechanism to two commonly-used bandit algorithms, LinUCB and LinTS, and instantiate two practical protocols for online recommendation under the vertical federated setting. The proposed protocols can perfectly recover the service quality of centralized bandit algorithms while achieving a satisfactory runtime efficiency, which is theoretically proved and analyzed in this paper. By conducting extensive experiments on both synthetic and real-world datasets, we show the superiority of the proposed method in terms of privacy protection and recommendation performance.