论文标题
ESPNN:基于IAEA停止功率数据库的新型电子停止电源神经网络代码。 I.原子靶标
ESPNN: A novel electronic stopping power neural-network code built on the IAEA stopping power database. I. Atomic targets
论文作者
论文摘要
国际原子能局(IAEA)停止电源数据库是一种非常有价值的公共资源,汇编了近一个世纪以来发布的大多数实验测量。全球科学界的数据库访问不断更新,并且已在理论和实验研究中广泛使用了30多年。这项工作旨在在2021 IAEA数据库上采用机器学习算法,以预测任何离子和靶标组合的准确的电子停止功率横截面。无监督的机器学习方法用于自动化方式清洁数据库。这些技术通过删除可疑异常值和旧的孤立值来清除数据。其余数据的很大一部分用于训练深神网络,而其余数据则被搁置一旁,构成了测试集。目前的工作仅考虑具有原子目标的碰撞系统。 ESPNN的第一个版本(电子停止功率神经网络代码)公开可供用户使用,该版本与测试集的实验结果非常吻合,可产生预测的值。
The International Atomic Energy Agency (IAEA) stopping power database is a highly valued public resource compiling most of the experimental measurements published over nearly a century. The database-accessible to the global scientific community-is continuously updated and has been extensively employed in theoretical and experimental research for more than 30 years. This work aims to employ machine learning algorithms on the 2021 IAEA database to predict accurate electronic stopping power cross sections for any ion and target combination in a wide range of incident energies. Unsupervised machine learning methods are applied to clean the database in an automated manner. These techniques purge the data by removing suspicious outliers and old isolated values. A large portion of the remaining data is used to train a deep neural network, while the rest is set aside, constituting the test set. The present work considers collisional systems only with atomic targets. The first version of the ESPNN (electronic stopping power neural-network code), openly available to users, is shown to yield predicted values in excellent agreement with the experimental results of the test set.