论文标题
部分可观测时空混沌系统的无模型预测
One-dimensional L{é}vy Quasicrystal
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Space-fractional quantum mechanics (SFQM) is a generalization of the standard quantum mechanics when the Brownian trajectories in Feynman path integrals are replaced by L{é}vy flights. We introduce L{é}vy quasicrystal by discretizing the space-fractional Schr$\ddot{\text{o}}$dinger equation using the Gr$\ddot{\text{u}}$nwald-Letnikov derivatives and adding on-site quasiperiodic potential. The discretized version of the usual Schr$\ddot{\text{o}}$dinger equation maps to the Aubry-Andr{é} Hamiltonian, which supports localization-delocalization transition even in one dimension. We find the similarities between L{é}vy quasicrystal and the Aubry-Andr{é} (AA) model with power-law hopping and show that the L{é}vy quasicrystal supports a delocalization-localization transition as one tunes the quasiperiodic potential strength and shows the coexistence of localized and delocalized states separated by mobility edge. Hence, a possible realization of SFQM in optical experiments should be a new experimental platform to test the predictions of AA models in the presence of power-law hopping.