论文标题
将相关反馈结合为寻求信息检索的相关性反馈,使用少量文件重新排行
Incorporating Relevance Feedback for Information-Seeking Retrieval using Few-Shot Document Re-Ranking
论文作者
论文摘要
将词汇检索器与神经重新排列模型配对,在大规模信息检索数据集上设定了最先进的性能。该管道涵盖了诸如问题回答或导航查询之类的方案,但是,对于寻求信息的方案,用户经常提供有关文档是否与单击形式或明确反馈相关的文档相关的信息。因此,在这项工作中,我们探讨了如何通过采用少量射击和参数效率的学习技术将相关反馈直接整合到神经重新排列模型中。具体来说,我们引入了一种KNN方法,该方法基于其与查询的相似性以及用户认为相关的文档对其进行了重新排名。此外,我们还探索了我们使用元学习的训练和随后对每个查询进行微调的跨编码模型,仅对反馈文档进行培训。为了评估我们的不同集成策略,我们将四个现有信息检索数据集转换为相关反馈方案。广泛的实验表明,将相关反馈直接集成到神经重新排行模型中可以提高其性能,并将词汇排名与我们最佳性能的神经重新疗程融合,超过5.2 NDCG@20。
Pairing a lexical retriever with a neural re-ranking model has set state-of-the-art performance on large-scale information retrieval datasets. This pipeline covers scenarios like question answering or navigational queries, however, for information-seeking scenarios, users often provide information on whether a document is relevant to their query in form of clicks or explicit feedback. Therefore, in this work, we explore how relevance feedback can be directly integrated into neural re-ranking models by adopting few-shot and parameter-efficient learning techniques. Specifically, we introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant. Further, we explore Cross-Encoder models that we pre-train using meta-learning and subsequently fine-tune for each query, training only on the feedback documents. To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario. Extensive experiments demonstrate that integrating relevance feedback directly in neural re-ranking models improves their performance, and fusing lexical ranking with our best performing neural re-ranker outperforms all other methods by 5.2 nDCG@20.