论文标题

主动图像索引

Active Image Indexing

论文作者

Fernandez, Pierre, Douze, Matthijs, Jégou, Hervé, Furon, Teddy

论文摘要

图像复制检测和从大数据库中检索利用两个组件。首先,神经网络将图像映射到向量表示,这对图像的各种变换是相对稳健的。其次,一种有效但近似的相似性搜索算法可与搜索质量交易可扩展性(大小和速度),从而引入了错误源。本文通过主动索引提高了图像复制检测的鲁棒性,从而优化了这两个组件的相互作用。我们通过在释放图像之前对图像表示不可察觉的更改来减少给定图像表示的量化损失。在感知约束下,通过深神网络将损失通过深神网络回到图像。这些修改使图像更容易检索。我们的实验表明,活化图像的检索和复制检测得到显着改善。例如,激活在各种图像转换上提高了$+40 \%$ the Recce1@1,以及基于产品量化和局部敏感性哈希的几种流行索引结构。

Image copy detection and retrieval from large databases leverage two components. First, a neural network maps an image to a vector representation, that is relatively robust to various transformations of the image. Second, an efficient but approximate similarity search algorithm trades scalability (size and speed) against quality of the search, thereby introducing a source of error. This paper improves the robustness of image copy detection with active indexing, that optimizes the interplay of these two components. We reduce the quantization loss of a given image representation by making imperceptible changes to the image before its release. The loss is back-propagated through the deep neural network back to the image, under perceptual constraints. These modifications make the image more retrievable. Our experiments show that the retrieval and copy detection of activated images is significantly improved. For instance, activation improves by $+40\%$ the Recall1@1 on various image transformations, and for several popular indexing structures based on product quantization and locality sensitivity hashing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源