论文标题
随机电转录中的独特登山性
Unique Ergodicity in Stochastic Electroconvection
论文作者
论文摘要
我们考虑了一个随机电交流模型,该模型描述了具有加性随机强迫的二维流体中表面电荷密度的非线性演化。我们证明了解决方案的存在和唯一性,我们定义了相应的马尔可夫半群,并研究了其flyer属性。当噪声在相空间中有足够的模式时,我们获得了与模型相关的马尔可夫过渡内核的平滑不变度度量的唯一性。
We consider a stochastic electroconvection model describing the nonlinear evolution of a surface charge density in a two-dimensional fluid with additive stochastic forcing. We prove the existence and uniqueness of solutions, we define the corresponding Markov semigroup, and we study its Feller properties. When the noise forces enough modes in phase space, we obtain the uniqueness of the smooth invariant measure for the Markov transition kernels associated with the model.