论文标题

带有“共线”质量的双环真空积分的无递归溶液

Recursion-free solution for two-loop vacuum integrals with "collinear" masses

论文作者

Davydychev, Andrei I., Schröder, York

论文摘要

我们研究了两个循环中特定类型的大型真空积分的结构。该类享受线性关系$ M_1+M_2 = M_3 $在其三个传播群之间,对应于相关的Källén函数的零。除了在热场理论中应用应用外,可以将积分映射到与共线外矩的单循环三分函数上,这表明术语“ colinear”质量。我们为这些积分提出了一个封闭式解决方案,证明它们可以始终将它们分解为一个整数值繁殖的传播器功率的单循环案例的产品。

We investigate the structure of a particular class of massive vacuum Feynman integrals at two loops. This class enjoys the linear relation $m_1+m_2=m_3$ between its three propagator masses, corresponding to zeros of the associated Källén function. Apart from having applications in thermal field theory, the integrals can be mapped onto one-loop three-point functions with collinear external momenta, suggesting the term "collinear" masses. We present a closed-form solution for these integrals, proving that they can always be factorized into products of one-loop cases, for all integer-valued propagator powers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源