论文标题
净入围:一种用于低延迟性癫痫发作局部野外电势的硅神经形态网络
NET-TEN: a silicon neuromorphic network for low-latency detection of seizures in local field potentials
论文作者
论文摘要
神经系统疾病的治疗干预仍然严重取决于药理学解决方案,而对耐药性患者的治疗仍然是一项开放的挑战。对于癫痫患者而言,尤其如此,其中30%对药物难治性。在这种情况下,用于慢性记录和脑活动电气调制的可植入设备已证明是可行的替代方法。为了操作,该设备应从局部场电位(LFP)检测相关的电视生物标志物,并确定刺激的合适时间。为了及时进行干预措施,理想的设备应在低功耗下运行以延长电池寿命的同时,以低潜伏期获得生物标志物检测。神经形态网络已逐渐成为低延迟的低功率计算系统的声誉,这使它们成为下一代可植入神经界面的处理核心的有前途的候选人。在这里,我们介绍了一种在CMOS技术中实施的完全分析神经形态装置,用于分析急性诊所的体外模型中的LFP信号。我们表明,该系统可以以MS延迟和高精度检测ICTAL和发作事件,在任务期间平均消耗3.50 NW。我们的工作为新一代的大脑植入设备铺平了道路,用于癫痫治疗的个性化闭环刺激。
Therapeutic intervention in neurological disorders still relies heavily on pharmacological solutions, while the treatment of patients with drug resistance remains an open challenge. This is particularly true for patients with epilepsy, 30% of whom are refractory to medications. Implantable devices for chronic recording and electrical modulation of brain activity have proved a viable alternative in such cases. To operate, the device should detect the relevant electrographic biomarkers from Local Field Potentials (LFPs) and determine the right time for stimulation. To enable timely interventions, the ideal device should attain biomarker detection with low latency while operating under low power consumption to prolong the battery life. Neuromorphic networks have progressively gained reputation as low-latency low-power computing systems, which makes them a promising candidate as processing core of next-generation implantable neural interfaces. Here we introduce a fully-analog neuromorphic device implemented in CMOS technology for analyzing LFP signals in an in vitro model of acute ictogenesis. We show that the system can detect ictal and interictal events with ms-latency and with high precision, consuming on average 3.50 nW during the task. Our work paves the way to a new generation of brain implantable devices for personalized closed-loop stimulation for epilepsy treatment.