论文标题

用于求解未知歧管上椭圆PDE的光谱方法

Spectral methods for solving elliptic PDEs on unknown manifolds

论文作者

Yan, Qile, Jiang, Shixiao, Harlim, John

论文摘要

在本文中,我们提出了一种无网格的数值方法,用于求解未知歧管上的椭圆PDE,并用随机采样点云数据识别。 PDE求解器作为光谱方法进行配制,其中测试功能空间是拉普拉斯运算符的领先特征函数的跨度,该函数从点云数据近似。尽管该框架对于任何测试功能空间都是灵活的,但我们将考虑从适当的Hilbert空间上加权laplacian的弱近似值引起的对称径向基函数(RBF)方法获得的加权拉普拉斯式的征。特别是,我们考虑一个编码数据几何形状但不需要我们识别和使用点云的采样密度的测试功能空间。为了获得扩展系数的更准确的近似,我们采用二阶切线空间估计方法来提高RBF插值精度,以估计切向导数。该频谱框架使我们能够有效地解决遭受不同参数的PDE,从而降低了相关的反问题应用中的计算成本。在带有随机采样点云数据的良好椭圆形设置中,我们提供了理论分析,以证明随着样本量增加而提出的求解器的收敛。我们还报告了一些数值研究,这些研究表明光谱求解器在简单的歧管和未知的粗糙表面上的收敛性。我们的数值结果表明,所提出的方法比平滑歧管上的基于laplacian的图形求解器更准确。在粗糙的歧管上,这两种方法是可比的。由于该框架的灵活性,我们通过将图形拉普拉斯(Laplacian eigensolutions)和RBF插装器融合在一起,从经验上发现了平滑和不平滑的斯坦福兔子域中的精度。

In this paper, we propose a mesh-free numerical method for solving elliptic PDEs on unknown manifolds, identified with randomly sampled point cloud data. The PDE solver is formulated as a spectral method where the test function space is the span of the leading eigenfunctions of the Laplacian operator, which are approximated from the point cloud data. While the framework is flexible for any test functional space, we will consider the eigensolutions of a weighted Laplacian obtained from a symmetric Radial Basis Function (RBF) method induced by a weak approximation of a weighted Laplacian on an appropriate Hilbert space. Especially, we consider a test function space that encodes the geometry of the data yet does not require us to identify and use the sampling density of the point cloud. To attain a more accurate approximation of the expansion coefficients, we adopt a second-order tangent space estimation method to improve the RBF interpolation accuracy in estimating the tangential derivatives. This spectral framework allows us to efficiently solve the PDE many times subjected to different parameters, which reduces the computational cost in the related inverse problem applications. In a well-posed elliptic PDE setting with randomly sampled point cloud data, we provide a theoretical analysis to demonstrate the convergent of the proposed solver as the sample size increases. We also report some numerical studies that show the convergence of the spectral solver on simple manifolds and unknown, rough surfaces. Our numerical results suggest that the proposed method is more accurate than a graph Laplacian-based solver on smooth manifolds. On rough manifolds, these two approaches are comparable. Due to the flexibility of the framework, we empirically found improved accuracies in both smoothed and unsmoothed Stanford bunny domains by blending the graph Laplacian eigensolutions and RBF interpolator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源