论文标题

生物声音呼叫标签平滑的传播变异模型不确定性

Propagating Variational Model Uncertainty for Bioacoustic Call Label Smoothing

论文作者

Rizos, Georgios, Lawson, Jenna, Mitchell, Simon, Shah, Pranay, Wen, Xin, Banks-Leite, Cristina, Ewers, Robert, Schuller, Bjoern W.

论文摘要

我们专注于使用由贝叶斯神经网络计算的预测不确定性信号来指导模型正在训练的自定义任务中的学习。在各种贝叶斯对重的贝叶斯改编中,我们不选择具有昂贵的蒙特卡洛对权重采样,而是以端到端的方式传播了近端的隐藏差异,并以注意力和挤压和激发块的范围进行了重新网络的适应,以识别应降低损失值计算的数据样本。因此,我们提出了不确定性感知的,特定于数据的标签平滑性,其中平滑概率取决于这种认知的不确定性。我们表明,通过对损失计算中认知不确定性的明确使用,变异模型可改善预测性和校准性能。这种核心机器学习方法可以在野生动植物呼叫检测中举例说明,从通过动物自然栖息地中的被动声学监测设备制作的录音,其未来的目标是以可信赖的方式自动化大规模注释。

We focus on using the predictive uncertainty signal calculated by Bayesian neural networks to guide learning in the self-same task the model is being trained on. Not opting for costly Monte Carlo sampling of weights, we propagate the approximate hidden variance in an end-to-end manner, throughout a variational Bayesian adaptation of a ResNet with attention and squeeze-and-excitation blocks, in order to identify data samples that should contribute less into the loss value calculation. We, thus, propose uncertainty-aware, data-specific label smoothing, where the smoothing probability is dependent on this epistemic uncertainty. We show that, through the explicit usage of the epistemic uncertainty in the loss calculation, the variational model is led to improved predictive and calibration performance. This core machine learning methodology is exemplified at wildlife call detection, from audio recordings made via passive acoustic monitoring equipment in the animals' natural habitats, with the future goal of automating large scale annotation in a trustworthy manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源