论文标题

使用被困的量子位的经典半将来:迈向节能计算

Classical Half-Adder using Trapped-ion Quantum Bits: Towards Energy-efficient Computation

论文作者

Pratapsi, Sagar Silva, Huber, Patrick H., Barthel, Patrick, Bose, Sougato, Wunderlich, Christof, Omar, Yasser

论文摘要

已经提出了可逆计算作为节能计算的未来范式,但迄今为止,实际上很少实现实现。量子电路在量子计算机上运行,​​是一种已知可逆的结构。在这项工作中,我们提供了在量子技术上运行的经典逻辑门的原理证明。特别是,我们使用辐射频率控制的$^{171} $ yb $^+$ ions在宏观的线性paul-trap中作为Qubits,并在实验上实现了适用于经典计算的Toffoli和Half-Adder电路。我们在理论上和实验上分析了操作逻辑门所需的能量,重点是控制能。我们确定瓶颈和未来平台的可能改进,以进行效率高效的计算,例如,具有集成天线和腔QED的陷阱芯片。我们的实验验证的能量模型还填补了量子信息能量学文献中的空白,并概述了其详细研究的路径及其对经典计算的潜在应用。

Reversible computation has been proposed as a future paradigm for energy efficient computation, but so far few implementations have been realised in practice. Quantum circuits, running on quantum computers, are one construct known to be reversible. In this work, we provide a proof-of-principle of classical logical gates running on quantum technologies. In particular, we propose, and realise experimentally, Toffoli and Half-Adder circuits suitable for classical computation, using radiofrequency-controlled $^{171}$Yb$^+$ ions in a macroscopic linear Paul-trap as qubits. We analyse the energy required to operate the logic gates, both theoretically and experimentally, with a focus on the control energy. We identify bottlenecks and possible improvements in future platforms for energetically-efficient computation, e.g., trap chips with integrated antennas and cavity QED. Our experimentally verified energetic model also fills a gap in the literature of the energetics of quantum information, and outlines the path for its detailed study, as well as its potential applications to classical computing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源