论文标题

极端多标签分类的不确定性

Uncertainty in Extreme Multi-label Classification

论文作者

Jiang, Jyun-Yu, Chang, Wei-Cheng, Zhong, Jiong, Hsieh, Cho-Jui, Yu, Hsiang-Fu

论文摘要

不确定性量化是获得决策可信赖和可靠的机器学习模型的最关键任务之一。但是,该领域中的大多数研究仅集中在小标签空间的问题上,而忽略了极端的多标签分类(XMC),这是网络规模机器学习应用程序的大数据时代的重要任务。此外,巨大的标签空间还可能导致嘈杂的检索结果和不确定性定量的棘手的计算挑战。在本文中,我们旨在研究具有基于概率合奏框架的基于树的XMC模型的一般不确定性量化方法。特别是,我们在XMC中分析了标签级别和实例级别的不确定性,并提出了基于光束搜索的一般近似框架,以有效地估计不确定性,并在长尾XMC预测下具有理论保证。对六个大型现实世界数据集的实证研究表明,我们的框架不仅在预测性能中胜过单个模型,而且还可以用作强大的基于不确定性的基准,用于标签错误分类和分布外检测,并具有很大的加快。此外,我们的框架可以基于具有不确定性量化的深XMC模型进一步产生更好的最新结果。

Uncertainty quantification is one of the most crucial tasks to obtain trustworthy and reliable machine learning models for decision making. However, most research in this domain has only focused on problems with small label spaces and ignored eXtreme Multi-label Classification (XMC), which is an essential task in the era of big data for web-scale machine learning applications. Moreover, enormous label spaces could also lead to noisy retrieval results and intractable computational challenges for uncertainty quantification. In this paper, we aim to investigate general uncertainty quantification approaches for tree-based XMC models with a probabilistic ensemble-based framework. In particular, we analyze label-level and instance-level uncertainty in XMC, and propose a general approximation framework based on beam search to efficiently estimate the uncertainty with a theoretical guarantee under long-tail XMC predictions. Empirical studies on six large-scale real-world datasets show that our framework not only outperforms single models in predictive performance, but also can serve as strong uncertainty-based baselines for label misclassification and out-of-distribution detection, with significant speedup. Besides, our framework can further yield better state-of-the-art results based on deep XMC models with uncertainty quantification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源