论文标题
$ L(\ Mathbb {r})$中类似归纳的点级的不可思议
Unreachability of Inductive-Like Pointclasses in $L(\mathbb{R})$
论文作者
论文摘要
Hjorth从$ ZF + AD + DC $证明,没有$σ^1_2 $长度$δ^1_2 $的序列。 Sargsyan扩展了Hjorth的技术,以表明没有独特的$σ^1_ {2n} $长度$δ^1_ {2n} $的序列。萨尔格西(Sargsyan)猜想了$ l(r)$中的任何常规Suslin PointClass都是正确的 - 即,如果$κ$是$ L(r)$中的常规Suslin Cardinal,则没有$κ$ -Suslin的$κ$ -SUSLIN的序列,$κsuslin seet of Length $κ^+$ in $ l(r)$。如果PointClass $ s(κ)$类似于电感,我们证明了这一点。
Hjorth proved from $ZF + AD + DC$ that there is no sequence of distinct $Σ^1_2$ sets of length $δ^1_2$. Sargsyan extended Hjorth's technique to show there is no sequence of distinct $Σ^1_{2n}$ sets of length $δ^1_{2n}$. Sargsyan conjectured an analogous property is true for any regular Suslin pointclass in $L(R)$ -- i.e. if $κ$ is a regular Suslin cardinal in $L(R)$, then there is no sequence of distinct $κ$-Suslin sets of length $κ^+$ in $L(R)$. We prove this in the case that the pointclass $S(κ)$ is inductive-like.