论文标题

边缘和大部分纠缠哈密顿的温度依赖性不同

Different temperature-dependence for the edge and bulk of entanglement Hamiltonian

论文作者

Song, Menghan, Zhao, Jiarui, Yan, Zheng, Meng, Zi Yang

论文摘要

我们提出了基于路径综合配方的蠕虫效应的物理图片,以解释纠缠频谱的机制(ES),因此,我们的图片不仅解释了拓扑状态,其拓扑状态具有能量光谱和ES(LI和Haldane猜想)的庞大对应关系(li和haldane猜想),而且通常适用于其他独立于其拓扑特性的系统。我们指出,最终,相对于边缘能隙的散装能量差距(乘以$β= 1/t $)的相对强度决定了系统低洼ES的行为。根据情况,ES可以类似于虚拟边缘的能量谱,但也可以代表虚拟体积的能量谱。我们设计了1D和2D的模型,以成功证明有限温度下的散装低洼ES,除了在零温度下由Li和Haldane猜想的边缘样情况。我们的结果支持将ES视为路径积分中的虫洞效应以及ES的边缘和大部分的不同温度依赖性的普遍性。

We propose a physical picture based on the wormhole effect of the path-integral formulation to explain the mechanism of entanglement spectrum (ES), such that, our picture not only explains the topological state with bulk-edge correspondence of the energy spectrum and ES (the Li and Haldane conjecture), but is generically applicable to other systems independent of their topological properties. We point out it is ultimately the relative strength of bulk energy gap (multiplied with inverse temperature $β=1/T$) with respect to the edge energy gap that determines the behavior of the low-lying ES of the system. Depending on the circumstances, the ES can resemble the energy spectrum of the virtual edge, but can also represent that of the virtual bulk. We design models both in 1D and 2D to successfully demonstrate the bulk-like low-lying ES at finite temperatures, in addition to the edge-like case conjectured by Li and Haldane at zero temperature. Our results support the generality of viewing the ES as the wormhole effect in the path integral and the different temperature-dependence for the edge and bulk of ES.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源