论文标题
稳定的信封,用于仿生的格拉斯曼尼亚薄片
Stable envelopes for slices of the affine Grassmannian
论文作者
论文摘要
与还原组$ \ mathbf {g} $相关的仿生草是通常的国旗品种的仿真类似物。它是泊松品种及其符号分辨率的丰富来源。这些空间是中岛Quiver品种双重锥形符号分辨率的例子。我们在这个家族中研究了D. Maulik和A. Okounkov [Arxiv:1211.1287]的共同学稳定信封。我们在$ \ mathbf {g} = \ mathbf {psl} _2 $案例中构建一个稳定信封的显式递归关系,并在一般情况下计算一阶校正。这使我们能够编写一个确切的公式,以乘以除数。
The affine Grassmannian associated to a reductive group $\mathbf{G}$ is an affine analogue of the usual flag varieties. It is a rich source of Poisson varieties and their symplectic resolutions. These spaces are examples of conical symplectic resolutions dual to the Nakajima quiver varieties. We study the cohomological stable envelopes of D. Maulik and A. Okounkov [arXiv:1211.1287] in this family. We construct an explicit recursive relation for the stable envelopes in the $\mathbf{G} = \mathbf{PSL}_2$ case and compute the first-order correction in the general case. This allows us to write an exact formula for multiplication by a divisor.