论文标题
几乎奇异积分的正交的分解和共形映射技术
Decomposition and conformal mapping techniques for the quadrature of nearly singular integrals
论文作者
论文摘要
高斯 - legendre正交和梯形规则是分析函数数值集成的强大工具。但是,对于几乎奇异的问题,这些标准方法变得不可接受。当知道附近奇点的位置时,我们讨论并概括了一些现有方法以改进这些方案。最后,我们将某些粘性流动的一些近乎奇异的表面积分应用。
Gauss-Legendre quadrature and the trapezoidal rule are powerful tools for numerical integration of analytic functions. For nearly singular problems, however, these standard methods become unacceptably slow. We discuss and generalize some existing methods for improving on these schemes when the location of the nearby singularity is known. We conclude with an application to some nearly singular surface integrals of viscous flow.