论文标题
ATCON:视觉模型的关注一致性
ATCON: Attention Consistency for Vision Models
论文作者
论文摘要
注意 - 或归因 - 映射方法是旨在突出模型输入区域的方法,这些方法对其预测具有歧视性。但是,不同的关注图方法可以突出输入的不同区域,有时对预测进行了矛盾的解释。当训练集很小时,这种效果会加剧。这表明该模型学习了不正确的表示形式,或者注意力图方法无法准确估计模型的表示。我们提出了一种无监督的微调方法,该方法优化了注意图的一致性,并表明它可以提高分类性能和注意图的质量。我们提出了一种针对两种最先进的注意计算方法的实现,该方法毕业-CAM和指导性反向传播,该方法依赖于输入掩蔽技术。我们还显示了一项消融研究中的Grad-CAM和集成梯度的结果。我们在我们自己的事件检测数据集中评估了这种方法,该方法在汇总和策划这项工作的医院患者的连续视频记录中评估了这种方法。作为理智检查,我们还评估了有关Pascal VOC和SVHN的建议方法。通过提出的方法,在小型训练集的情况下,我们在视频数据集上的基线上获得了6.6分的F1得分,帕斯卡(Pascal)的F1得分的2.9点提升,以及在帕斯卡尔(Pascal)上弱监督检测的平均相交额定值1.8点。这些改善的注意力图可以帮助临床医生更好地了解视力模型的预测,并将机器学习系统的部署到临床护理中。我们在以下存储库中分享本文代码的一部分:https://github.com/alimirzazadeh/semisupervisestention。
Attention--or attribution--maps methods are methods designed to highlight regions of the model's input that were discriminative for its predictions. However, different attention maps methods can highlight different regions of the input, with sometimes contradictory explanations for a prediction. This effect is exacerbated when the training set is small. This indicates that either the model learned incorrect representations or that the attention maps methods did not accurately estimate the model's representations. We propose an unsupervised fine-tuning method that optimizes the consistency of attention maps and show that it improves both classification performance and the quality of attention maps. We propose an implementation for two state-of-the-art attention computation methods, Grad-CAM and Guided Backpropagation, which relies on an input masking technique. We also show results on Grad-CAM and Integrated Gradients in an ablation study. We evaluate this method on our own dataset of event detection in continuous video recordings of hospital patients aggregated and curated for this work. As a sanity check, we also evaluate the proposed method on PASCAL VOC and SVHN. With the proposed method, with small training sets, we achieve a 6.6 points lift of F1 score over the baselines on our video dataset, a 2.9 point lift of F1 score on PASCAL, and a 1.8 points lift of mean Intersection over Union over Grad-CAM for weakly supervised detection on PASCAL. Those improved attention maps may help clinicians better understand vision model predictions and ease the deployment of machine learning systems into clinical care. We share part of the code for this article at the following repository: https://github.com/alimirzazadeh/SemisupervisedAttention.