论文标题
Frechet歧管的多重定理
Multiplicity Theorems for Frechet Manifolds
论文作者
论文摘要
我们证明了凯勒(Keller)$ c_c^1 $ functionals和Finsler歧管上的多重定理,这些频率在离散子组的作用下是不变的。对于此类功能,我们通过应用Lusternik-Schnirelmann类别来评估关键点的最少数量。
We prove multiplicity theorems for Keller $ C_c^1 $-functionals on Frechet spaces and Finsler manifolds which are invariant under the action of a discrete subgroup. For such functionals, we evaluate the minimal number of critical points by applying the Lusternik-Schnirelmann category.