论文标题
根据SQM测量和经验大气模型评估的光污染的长期趋势
Long-term trends of light pollution assessed from SQM measurements and an empirical atmospheric model
论文作者
论文摘要
我们介绍了在26个地点观察到的光污染的长期(4 - 10年)趋势,其中包括农村,中级和城市地点,包括斯德哥尔摩,柏林和维也纳的三个主要欧洲大都市地区。我们的分析基于i)夜空亮度(NSB)测量,该测量值是通过天空质量仪(SQM)和II)获得的一套大气数据产品,由欧洲中等范围的天气预报中心提供。我们描述了SQM数据减少例程,其中我们使用Puschnig等人的Twilight方法的更新版本过滤了月球和清晰的数据,并纠正了SQM“老化”效果。 (2021)。我们清晰的衰老校正数据揭示了由于大气变化而导致的短期和长期(季节性)变化。为了评估长期人为NSB趋势,我们通过多变量的惩罚线性回归建立了经验大气模型。我们的建模方法可以定量地研究不同大气参数的重要性,表明表面反照率和植被对Zenithal NSB的影响最大。此外,NSB分别对城市和农村地区的黑碳和有机物气溶胶敏感。发现积雪深度对于某些地点很重要,而臭氧叶的总圆柱在某些地方影响。我们11个农村地区的光污染的平均增加为每年1.7%。在我们的9个城市地点,我们每年的增长1.8%,其余六个中间地点我们发现平均每年增加3.7%。这些数字对应于41、39和19年的两倍时间。我们估计我们的方法能够检测到趋势斜率较浅/陡峭的每年1.5%。
We present long-term (4-10 years) trends of light pollution observed at 26 locations, covering rural, intermediate and urban sites, including the three major European metropolitan areas of Stockholm, Berlin and Vienna. Our analysis is based on i) night sky brightness (NSB) measurements obtained with Sky Quality Meters (SQMs) and ii) a rich set of atmospheric data products provided by the European Centre for Medium-Range Weather Forecasts. We describe the SQM data reduction routine in which we filter for moon- and clear-sky data and correct for the SQM "aging" effect using an updated version of the twilight method of Puschnig et al. (2021). Our clear-sky, aging-corrected data reveals short- and long-term (seasonal) variations due to atmospheric changes. To assess long-term anthropogenic NSB trends, we establish an empirical atmospheric model via multi-variate penalized linear regression. Our modeling approach allows to quantitatively investigate the importance of different atmospheric parameters, revealing that surface albedo and vegetation have by far the largest impact on zenithal NSB. Additionally, the NSB is sensitive to black carbon and organic matter aerosols at urban and rural sites respectively. Snow depth was found to be important for some sites, while the total column of ozone leaves impact on some rural places. The average increase in light pollution at our 11 rural sites is 1.7 percent per year. At our nine urban sites we measure an increase of 1.8 percent per year and for the remaining six intermediate sites we find an average increase of 3.7 percent per year. These numbers correspond to doubling times of 41, 39 and 19 years. We estimate that our method is capable of detecting trend slopes shallower/steeper than 1.5 percent per year.