论文标题

切成薄片的Wasserstein距离的统计,鲁棒性和计算保证

Statistical, Robustness, and Computational Guarantees for Sliced Wasserstein Distances

论文作者

Nietert, Sloan, Sadhu, Ritwik, Goldfeld, Ziv, Kato, Kengo

论文摘要

切成薄片的Wasserstein距离可保留经典的Wasserstein距离的性质,同时更可扩展高度的计算和估计。这项工作的目的是从三个关键方面量化这种可伸缩性:(i)经验收敛速率; (ii)对数据污染的鲁棒性; (iii)有效的计算方法。对于经验融合,我们得出了常数对尺寸的明确依赖性的快速速率,但要遵守人口分布的对数洞穴。为了鲁棒性,我们表征了最小,无尺寸的稳健估计风险,并显示出可靠的切成薄片1-wasserstein估计与稳健平均估计之间的等效性。这使得可以提升统计和算法保证后者可用于切成薄片的1-wasserstein设置。继续前进到计算方面,我们分析了平均距离距离的蒙特卡洛估计器,表明较大的维度可以导致数值集成误差的更快收敛。对于最大距离的距离,我们专注于一种基于亚级别的局部优化算法,该算法经常在实践中使用,尽管没有正式保证,并建立了$(ε^{ - 4})$计算复杂性。我们的理论得到了数值实验的验证,该实验完全提供了对可扩展性问题的全面定量描述。

Sliced Wasserstein distances preserve properties of classic Wasserstein distances while being more scalable for computation and estimation in high dimensions. The goal of this work is to quantify this scalability from three key aspects: (i) empirical convergence rates; (ii) robustness to data contamination; and (iii) efficient computational methods. For empirical convergence, we derive fast rates with explicit dependence of constants on dimension, subject to log-concavity of the population distributions. For robustness, we characterize minimax optimal, dimension-free robust estimation risks, and show an equivalence between robust sliced 1-Wasserstein estimation and robust mean estimation. This enables lifting statistical and algorithmic guarantees available for the latter to the sliced 1-Wasserstein setting. Moving on to computational aspects, we analyze the Monte Carlo estimator for the average-sliced distance, demonstrating that larger dimension can result in faster convergence of the numerical integration error. For the max-sliced distance, we focus on a subgradient-based local optimization algorithm that is frequently used in practice, albeit without formal guarantees, and establish an $O(ε^{-4})$ computational complexity bound for it. Our theory is validated by numerical experiments, which altogether provide a comprehensive quantitative account of the scalability question.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源