论文标题
部分可观测时空混沌系统的无模型预测
Pruning-based Topology Refinement of 3D Mesh using a 2D Alpha Mask
论文作者
论文摘要
在过去几年中,基于图像的3D重建越来越令人惊叹,随着计算机视觉和图形的最新改进。在处理3D网格结构时,几何和拓扑是两个基本概念。但是最新的经常仍然是基于3D网格的重建文献中的一个问题。实际上,在3D球体上执行每位vertex基本位移只会影响其几何形状,并使拓扑结构保持不变和固定。尽管很少有尝试更新几何形状和拓扑,但所有人都需要依靠代价高昂的3D地面真相来确定修剪的面部/边缘。我们在这项工作中介绍了一种旨在通过面部倾斜策略来完善任何3D网格拓扑的方法,该策略广泛依赖于2D Alpha口罩和相机姿势信息。我们的解决方案利用了一个可区分的渲染器,该渲染器将每个面呈现为2D软地图。它的像素强度反映了这种面部在渲染过程中被覆盖的可能性。基于可用的2D软罩,我们的方法能够快速突出显示给定观点的所有错误渲染面。由于我们的模块对产生3D网格的网络不可知,因此可以很容易地将其插入任何基于图像的自我保护图(合成或天然)3D重建管道中,以获得具有非态拓扑的复杂网格。
Image-based 3D reconstruction has increasingly stunning results over the past few years with the latest improvements in computer vision and graphics. Geometry and topology are two fundamental concepts when dealing with 3D mesh structures. But the latest often remains a side issue in the 3D mesh-based reconstruction literature. Indeed, performing per-vertex elementary displacements over a 3D sphere mesh only impacts its geometry and leaves the topological structure unchanged and fixed. Whereas few attempts propose to update the geometry and the topology, all need to lean on costly 3D ground-truth to determine the faces/edges to prune. We present in this work a method that aims to refine the topology of any 3D mesh through a face-pruning strategy that extensively relies upon 2D alpha masks and camera pose information. Our solution leverages a differentiable renderer that renders each face as a 2D soft map. Its pixel intensity reflects the probability of being covered during the rendering process by such a face. Based on the 2D soft-masks available, our method is thus able to quickly highlight all the incorrectly rendered faces for a given viewpoint. Because our module is agnostic to the network that produces the 3D mesh, it can be easily plugged into any self-supervised image-based (either synthetic or natural) 3D reconstruction pipeline to get complex meshes with a non-spherical topology.