论文标题

三态POTTS模型的上部临界维度

Upper critical dimension of the 3-state Potts model

论文作者

Chester, Shai M., Su, Ning

论文摘要

我们考虑$ d \ geq2 $尺寸中的三州potts型号。对于$ d $,小于临界尺寸$ d_ \ text {crit} $的$ d $,该模型具有关键和三个固定点。在$ d = 2 $中,这些固定点由最小型号描述,因此可以解决。但是,对于$ d> 2 $,强耦合使它们难以学习,并且就$ d_ \ text {crit} $的值尚无共识。我们使用数值共形性启动程序来计算一般$ d $的关键和三个固定点的关键指数。在$ d = 2 $中,我们的结果与预期值相匹配,随着我们增加$ d $,我们发现每个固定点的关键指数越来越近,直到它们合并在$ d_ \ text {crit} \ lyssim 2.5 $附近。

We consider the 3-state Potts model in $d\geq2$ dimensions. For $d$ less than the upper critical dimension $d_\text{crit}$, the model has a critical and a tricritical fixed point. In $d=2$, these fixed points are described by minimal models, and so are exactly solvable. For $d>2$, however, strong coupling makes them difficult to study and there is no consensus on the value of $d_\text{crit}$. We use the numerical conformal bootstrap to compute critical exponents of both the critical and tricritical fixed points for general $d$. In $d=2$ our results match the expected values, and as we increase $d$ we find that the critical exponents of each fixed point get closer until they merge near $d_\text{crit}\lesssim 2.5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源