论文标题
全场原子分辨率图像的傅立叶变换的周期性伪像减少
Periodic Artifact Reduction in Fourier transforms of Full Field Atomic Resolution Images
论文作者
论文摘要
离散的傅立叶变换是高分辨率扫描 /透射电子显微镜(S / TEM)中使用的最常规工具之一。但是,当计算傅立叶变换时,会施加周期性的边界条件,并且图像边缘之间的急剧不连续性导致沿相互空间轴的交叉图案伪影。该伪影可以干扰原子分辨率图像的相互晶格峰的分析。在这里,我们证明了最近开发的周期性加平滑分解技术提供了一种简单,有效的方法,可靠地去除边缘不连续性引起的伪像。在这种方法中,通过减去平稳的背景来减少边缘伪像,该背景通过图像边缘设置的边界条件解决泊松方程。与传统的窗口傅立叶变换不同,周期性加平滑分解可从图像的整个视野中保持尖锐的相互晶格峰。
The discrete Fourier transform is among the most routine tools used in high-resolution scanning / transmission electron microscopy (S/TEM). However, when calculating a Fourier transform, periodic boundary conditions are imposed and sharp discontinuities between the edges of an image cause a cross patterned artifact along the reciprocal space axes. This artifact can interfere with the analysis of reciprocal lattice peaks of an atomic resolution image. Here we demonstrate that the recently developed Periodic Plus Smooth Decomposition technique provides a simple, efficient method for reliable removal of artifacts caused by edge discontinuities. In this method, edge artifacts are reduced by subtracting a smooth background that solves Poisson's equation with boundary conditions set by the image's edges. Unlike the traditional windowed Fourier transforms, Periodic Plus Smooth Decomposition maintains sharp reciprocal lattice peaks from the image's entire field of view.