论文标题

Batalin-vilkovisky结构在平坦连接的模量空间上

Batalin-Vilkovisky structures on moduli spaces of flat connections

论文作者

Alekseev, Anton, Naef, Florian, Pulmann, Ján, Ševera, Pavol

论文摘要

Let $Σ$ be a compact oriented 2-manifold (possibly with boundary), and let $\mathcal G_Σ$ be the linear span of free homotopy classes of closed oriented curves on $Σ$ equipped with the Goldman Lie bracket $[\cdot, \cdot]_\mathrm{Goldman}$ defined in terms of intersections of curves.高盛的定理引起了谎言同构$φ^\ mathrm {偶} $从$(\ Mathcalg_σ,[\ cdot,\ cdot] _ \ text {goldman})$ function funco. Atiyah-Bott Poisson支架。 空间$ \ MATHCAL {G}_σ$还带有Turaev Lie Cobracket $δ__\ Mathrm {Turaev} $,根据曲线的自我交流。在本文中,我们解决了以下自然问题:平面连接的模量空间上的几何结构对应于Turaev Cobracket? 我们在以下情况下对这个问题给出了一个建设性的答案:对于$ g $ a的超级组,其谎言superalgebra上有一个奇怪的不变产品,对于非空的$ \partialς$,我们表明,平面连接的模量$ \ nathcal {m}_σ(g)$ batalin-vilkovisky(bvilkovisky(bvilkovisky)(batalin-vilkovisky)(bvilkovisky)(bvilkovisky(g) fock腐败的公式。 Furthermore, for the queer Lie supergroup $G=Q(N)$, we define a BV-morphism $Φ^\mathrm{odd}\colon \wedge \mathcal{G}_Σ \to \mathrm{Fun}(\mathcal{M}_Σ(Q(N)))$ which replaces the Goldman map, and which captures the information both on高盛支架和Turaev Cobracket。地图$φ^\ mathrm {奇数} $是使用$ q(n)$上的“奇数”函数构建的。

Let $Σ$ be a compact oriented 2-manifold (possibly with boundary), and let $\mathcal G_Σ$ be the linear span of free homotopy classes of closed oriented curves on $Σ$ equipped with the Goldman Lie bracket $[\cdot, \cdot]_\mathrm{Goldman}$ defined in terms of intersections of curves. A theorem of Goldman gives rise to a Lie homomorphism $Φ^\mathrm{even}$ from $(\mathcal G_Σ, [\cdot, \cdot]_\text{Goldman})$ to functions on the moduli space of flat connections $\mathcal{M}_Σ(G)$ for $G=U(N), GL(N)$, equipped with the Atiyah-Bott Poisson bracket. The space $\mathcal{G}_Σ$ also carries the Turaev Lie cobracket $δ_\mathrm{Turaev}$ defined in terms of self-intersections of curves. In this paper, we address the following natural question: which geometric structure on moduli spaces of flat connections corresponds to the Turaev cobracket? We give a constructive answer to this question in the following context: for $G$ a Lie supergroup with an odd invariant scalar product on its Lie superalgebra, and for nonempty $\partialΣ$, we show that the moduli space of flat connections $\mathcal{M}_Σ(G)$ carries a natural Batalin-Vilkovisky (BV) structure, given by an explicit combinatorial Fock-Rosly formula. Furthermore, for the queer Lie supergroup $G=Q(N)$, we define a BV-morphism $Φ^\mathrm{odd}\colon \wedge \mathcal{G}_Σ \to \mathrm{Fun}(\mathcal{M}_Σ(Q(N)))$ which replaces the Goldman map, and which captures the information both on the Goldman bracket and on the Turaev cobracket. The map $Φ^\mathrm{odd}$ is constructed using the "odd trace" function on $Q(N)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源