论文标题

在波兰动力学系统中,带有规格的伯克霍夫平均值的一组点的Borel复杂性具有规范属性

Borel complexity of sets of points with prescribed Birkhoff averages in Polish dynamical systems with a specification property

论文作者

Deka, Konrad, Jackson, Steve, Kwietniak, Dominik, Mance, Bill

论文摘要

我们研究了通过将轨道统计行为限制在波兰空间上的动态系统中的统计行为来定义的一组点的描述性复杂性。此类集合的一个特定示例是$ t $ invariant borel概率度量的一组通用点,但我们还考虑了更多的通用集(例如,$α$ -Birkhoff常规集和不规则集中出现的不规则集中出现在多型持续平均值的持续真实价值函数的多型分析中)。我们表明,其中许多集合都是Borel。实际上,当我们假设我们的空间紧凑时,所有这些集合都是Borel。我们提供了这些集合的示例,是非孔,适当地放置在投影层次结构的第一级(它们是完整的分析或共分析)。这证明在某些情况下,紧凑的假设是获得鲍尔度所必需的。当这些集合是Borel时,我们使用Borel层次结构来测量其描述性复杂性。我们表明,感兴趣的集合最多位于层次结构的第三层。我们还使用规范属性的修改版本来表明,对于许多动态系统,这些集合位于第三级。为了证明规范属性是足够的,但不是一组通用点的最大描述性复杂性的必要条件,我们提供了一个紧凑的最小系统的示例,该系统具有一个不变的度量,其一组通用点为$π^0_3 $ -Complete。

We study the descriptive complexity of sets of points defined by placing restrictions on statistical behaviour of their orbits in dynamical systems on Polish spaces. A particular examples of such sets are the set of generic points of a $T$-invariant Borel probability measure, but we also consider much more general sets (for example, $α$-Birkhoff regular sets and the irregular set appearing in multifractal analysis of ergodic averages of a continuous real-valued function). We show that many of these sets are Borel. In fact, all these sets are Borel when we assume that our space is compact. We provide examples of these sets being non-Borel, properly placed at the first level of the projective hierarchy (they are complete analytic or co-analytic). This proves that the compactness assumption is in some cases necessary to obtain Borelness. When these sets are Borel, we use the Borel hierarchy to measure their descriptive complexity. We show that the sets of interest are located at most at the third level of the hierarchy. We also use a modified version of the specification property to show that for many dynamical systems these sets are properly located at the third level. To demonstrate that the specification property is a sufficient, but not necessary condition for maximal descriptive complexity of a set of generic points, we provide an example of a compact minimal system with an invariant measure whose set of generic points is $Π^0_3$-complete.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源