论文标题
观看邻居:一个统一的K-Neart邻居对比学习框架,以发现
Watch the Neighbors: A Unified K-Nearest Neighbor Contrastive Learning Framework for OOD Intent Discovery
论文作者
论文摘要
发现室外(OOD)意图对于发展面向任务的对话系统的新技能很重要。关键挑战在于如何将先前的内域(IND)知识转移到OOD聚类,以及共同学习OOD表示和集群分配。以前的方法遇到了过度拟合的问题,并且在表示学习和聚类目标之间存在自然差距。在本文中,我们提出了一个统一的K-Nearthigh邻居对比学习框架,以发现OOD意图。具体而言,对于IND预训练阶段,我们提出了一个KCL目标,以学习类间的判别特征,同时保持阶层内多样性,从而减轻了域内过度拟合的问题。对于OOD聚类阶段,我们提出了一种KCC方法,通过挖掘真正的硬性样本来形成紧凑型簇,从而弥合了聚类和表示学习之间的差距。在三个基准数据集上进行的广泛实验表明,我们的方法对最先进的方法实现了实质性改进。
Discovering out-of-domain (OOD) intent is important for developing new skills in task-oriented dialogue systems. The key challenges lie in how to transfer prior in-domain (IND) knowledge to OOD clustering, as well as jointly learn OOD representations and cluster assignments. Previous methods suffer from in-domain overfitting problem, and there is a natural gap between representation learning and clustering objectives. In this paper, we propose a unified K-nearest neighbor contrastive learning framework to discover OOD intents. Specifically, for IND pre-training stage, we propose a KCL objective to learn inter-class discriminative features, while maintaining intra-class diversity, which alleviates the in-domain overfitting problem. For OOD clustering stage, we propose a KCC method to form compact clusters by mining true hard negative samples, which bridges the gap between clustering and representation learning. Extensive experiments on three benchmark datasets show that our method achieves substantial improvements over the state-of-the-art methods.