论文标题

基于差分进化的双对抗性伪装:欺骗人眼和对象探测器

Differential Evolution based Dual Adversarial Camouflage: Fooling Human Eyes and Object Detectors

论文作者

Sun, Jialiang, Jiang, Tingsong, Yao, Wen, Wang, Donghua, Chen, Xiaoqian

论文摘要

最近的研究表明,基于深的神经网络(DNN)对象检测器以将扰动添加到图像的形式而容易受到对抗性攻击的影响,从而导致对象检测器的错误输出。当前的大多数现有作品着重于生成扰动图像,也称为对抗性示例,以欺骗对象探测器。尽管产生的对抗性例子本身可以保持一定的自然性,但大多数人仍然可以轻松地被人眼观察到,这限制了它们在现实世界中的进一步应用。为了减轻这个问题,我们提出了一个基于差异进化的双对伪装(DE_DAC)方法,该方法由两个阶段组成,以同时欺骗人类的眼睛和对象探测器。具体而言,我们尝试获得伪装纹理,可以在物体的表面上渲染。在第一阶段,我们优化了全局纹理,以最大程度地减少渲染对象和场景图像之间的差异,从而使人眼睛难以区分。在第二阶段,我们设计了三个损失功能,以优化本地纹理,使对象探测器无效。此外,我们介绍了差分进化算法,以搜索物体的近乎最佳区域以攻击,从而在某些攻击区域限制下改善对抗性的性能。此外,我们还研究了自适应de_dac的性能,可以适应环境。实验表明,我们提出的方法可以在多个特定场景和物体下的愚蠢的人眼与对象探测器之间获得良好的权衡。

Recent studies reveal that deep neural network (DNN) based object detectors are vulnerable to adversarial attacks in the form of adding the perturbation to the images, leading to the wrong output of object detectors. Most current existing works focus on generating perturbed images, also called adversarial examples, to fool object detectors. Though the generated adversarial examples themselves can remain a certain naturalness, most of them can still be easily observed by human eyes, which limits their further application in the real world. To alleviate this problem, we propose a differential evolution based dual adversarial camouflage (DE_DAC) method, composed of two stages to fool human eyes and object detectors simultaneously. Specifically, we try to obtain the camouflage texture, which can be rendered over the surface of the object. In the first stage, we optimize the global texture to minimize the discrepancy between the rendered object and the scene images, making human eyes difficult to distinguish. In the second stage, we design three loss functions to optimize the local texture, making object detectors ineffective. In addition, we introduce the differential evolution algorithm to search for the near-optimal areas of the object to attack, improving the adversarial performance under certain attack area limitations. Besides, we also study the performance of adaptive DE_DAC, which can be adapted to the environment. Experiments show that our proposed method could obtain a good trade-off between the fooling human eyes and object detectors under multiple specific scenes and objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源