论文标题
VoxelCache:在机器人技术和3D重建任务中加速在线映射
VoxelCache: Accelerating Online Mapping in Robotics and 3D Reconstruction Tasks
论文作者
论文摘要
实时3D映射是当今许多重要应用中的关键组件,包括机器人,AR/VR和3D可视化。 3D映射涉及连续融合从手机,机器人和自动驾驶汽车的深度传感器获得的深度图中,成为场景的单个3D代表模型。许多重要的应用,例如在微型航空车中的全球路径计划和轨迹产生,都需要在高分辨率上构建大型地图。在这项工作中,我们将映射(即3D地图的构造和更新)确定为这些应用程序中的关键瓶颈。这些地图所需的内存和访问时间限制了可行映射环境的分辨率的分辨率,尤其是在资源约束环境(例如自主机器人平台和便携式设备)中。为了应对这一挑战,我们提出了VoxelCache:一种硬件软件技术,以加速3D映射应用程序中的地图数据访问时间。我们观察到,映射应用程序通常在地图中访问彼此之间共同置于空间共处的体素。我们利用Voxel访问的此时间范围的位置可用于缓存索引到体素的块,以便快速查找并避免昂贵的访问时间。我们在GPU和CPU上均使用了普遍使用的映射和重建应用程序上评估VoxelCache。我们在CPU和GPU上的平均速度分别为1.47倍(高达1.66倍)和1.79倍(高达1.91倍)。
Real-time 3D mapping is a critical component in many important applications today including robotics, AR/VR, and 3D visualization. 3D mapping involves continuously fusing depth maps obtained from depth sensors in phones, robots, and autonomous vehicles into a single 3D representative model of the scene. Many important applications, e.g., global path planning and trajectory generation in micro aerial vehicles, require the construction of large maps at high resolutions. In this work, we identify mapping, i.e., construction and updates of 3D maps to be a critical bottleneck in these applications. The memory required and access times of these maps limit the size of the environment and the resolution with which the environment can be feasibly mapped, especially in resource constrained environments such as autonomous robot platforms and portable devices. To address this challenge, we propose VoxelCache: a hardware-software technique to accelerate map data access times in 3D mapping applications. We observe that mapping applications typically access voxels in the map that are spatially co-located to each other. We leverage this temporal locality in voxel accesses to cache indices to blocks of voxels to enable quick lookup and avoid expensive access times. We evaluate VoxelCache on popularly used mapping and reconstruction applications on both GPUs and CPUs. We demonstrate an average speedup of 1.47X (up to 1.66X) and 1.79X (up to 1.91X) on CPUs and GPUs respectively.