论文标题
有效的深神经网络,可在大型3D图像中找到小物体
An efficient deep neural network to find small objects in large 3D images
论文作者
论文摘要
3D成像通过提供有关器官解剖结构的空间信息来实现准确的诊断。但是,使用3D图像来训练AI模型在计算上具有挑战性,因为它们由比2D对应物多10倍或100倍的像素组成。要接受高分辨率3D图像的培训,卷积神经网络诉诸于将其降采样或将其投影到2D。我们提出了一个有效的替代方案,即一种神经网络,可以有效地分类3D医学图像。与现成的卷积神经网络相比,我们的网络,3D全球意识的多个实例分类器(3D-GMIC)使用77.98%-90.05%的GPU存储器和91.23%-96.02%的计算少。尽管仅使用图像级标签进行训练,但没有分割标签,但它通过提供像素级显着性图来解释其预测。在NYU Langone Health收集的数据集上,包括85,526例全景乳房X线摄影(FFDM)患者,合成2D乳房X线摄影和3D乳房X线摄影和3D乳房X线摄影,3D-GMIC在使用分类乳房中的AUC达到0.831(95%CI:95%CI:0.769-0.887)。这与FFDM上的GMIC(0.816,95%CI:0.737-0.878)和合成2D(0.826,95%CI:0.754-0.884)的性能相媲美,这表明尽管3D-GMIC成功地将大型3D图像归类为较小的计算,但该图与较小的计算相比,它与较小的一百分比相比,该图像与GM相比gm g. gm g. gm g. gm g. gm g. gm input gm g g g g g g g g g g g c input的gm g g g g g g g c cy aft gum conpt input gum与gm的相比。因此,3D-GMIC从3D图像中识别并利用了由数亿像素组成的3D图像的极小感兴趣的区域,从而大大减少了相关的计算挑战。 3D-GMIC可以很好地概括为BCS-DBT,BCS-DBT是杜克大学医院的外部数据集,AUC为0.848(95%CI:0.798-0.896)。
3D imaging enables accurate diagnosis by providing spatial information about organ anatomy. However, using 3D images to train AI models is computationally challenging because they consist of 10x or 100x more pixels than their 2D counterparts. To be trained with high-resolution 3D images, convolutional neural networks resort to downsampling them or projecting them to 2D. We propose an effective alternative, a neural network that enables efficient classification of full-resolution 3D medical images. Compared to off-the-shelf convolutional neural networks, our network, 3D Globally-Aware Multiple Instance Classifier (3D-GMIC), uses 77.98%-90.05% less GPU memory and 91.23%-96.02% less computation. While it is trained only with image-level labels, without segmentation labels, it explains its predictions by providing pixel-level saliency maps. On a dataset collected at NYU Langone Health, including 85,526 patients with full-field 2D mammography (FFDM), synthetic 2D mammography, and 3D mammography, 3D-GMIC achieves an AUC of 0.831 (95% CI: 0.769-0.887) in classifying breasts with malignant findings using 3D mammography. This is comparable to the performance of GMIC on FFDM (0.816, 95% CI: 0.737-0.878) and synthetic 2D (0.826, 95% CI: 0.754-0.884), which demonstrates that 3D-GMIC successfully classified large 3D images despite focusing computation on a smaller percentage of its input compared to GMIC. Therefore, 3D-GMIC identifies and utilizes extremely small regions of interest from 3D images consisting of hundreds of millions of pixels, dramatically reducing associated computational challenges. 3D-GMIC generalizes well to BCS-DBT, an external dataset from Duke University Hospital, achieving an AUC of 0.848 (95% CI: 0.798-0.896).