论文标题

关于债券颤抖的评论

Remarks on the Bondal quiver

论文作者

Sung, Benjamin

论文摘要

我们研究了粘结箭量的可允许的子类别,该类别猜想不承认任何Bridgeland稳定性条件。具体而言,我们证明其Serre函子与与$ 3 $ - 透明对象相关的球形转换一致。结果,我们获得了球形对象的分类,推断出serre不变稳定性条件的不存在,并从其结构中构造自然球形函数作为节点立方曲线的分类分辨率。

We study an admissible subcategory of the Bondal quiver which conjecturally does not admit any Bridgeland stability conditions. Specifically, we prove that its Serre functor coincides with the spherical twist associated with a $3$-spherical object. As a consequence, we obtain a classification of the spherical objects, deduce the non-existence of Serre-invariant stability conditions, and construct a natural spherical functor from its structure as a categorical resolution of the nodal cubic curve.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源