论文标题

Revamp3D:构建具有单一集成逻辑和内存的系统的处理器核心和缓存层次结构

RevaMp3D: Architecting the Processor Core and Cache Hierarchy for Systems with Monolithically-Integrated Logic and Memory

论文作者

Ghiasi, Nika Mansouri, Sadrosadati, Mohammad, Oliveira, Geraldo F., Kanellopoulos, Konstantinos, Ausavarungnirun, Rachata, Luna, Juan Gómez, Ferreira, João, Kim, Jeremie S., Giannoula, Christina, Vijaykumar, Nandita, Park, Jisung, Mutlu, Onur

论文摘要

最近的纳米技术进步使单个芯片中多个内存和逻辑层的整体式3D(M3D)整合,从而可以在层之间进行细粒的连接,并显着减轻主内存瓶颈。我们在最先进的M3D系统上显示了各种工作负载,表明性能和能量瓶颈从主内存转移到处理器核心和高速缓存层次结构。因此,有必要重新审视经常定制以应对内存瓶颈的当前设计。根据我们的设计空间探索的见解,我们提出了Revamp3D,引入了五个关键更改。首先,我们建议删除共享的最后一个级别的缓存,因为这提供了可与或超过增加大小或在所有工作负载中降低其延迟的速度相当的加速。其次,由于改善L1缓存潜伏期对性能的影响很大,因此我们通过利用M3D布局缩短电线来减少L1潜伏期。第三,我们将该区域从删除的缓存重新利用,以扩大和扩展管道结构,以适应更多由M3D内存有效提供的机上请求。为了避免这些较大的结构的延迟惩罚,我们利用M3D布局。第四,为了促进高线程水平并行性,我们使用M3D密集的层间连接提出了一种新的细粒同步技术。第五,我们利用M3D主内存来减轻核心瓶颈。我们提出了一个处理器前端设计,该设计记忆了重复提取,解码和重新排序的说明,将其存储在主内存中,并在可能的情况下关闭核心的相关部分。与最先进的M3D系统相比,Revamp3D提供1.2x-2.9倍的速度和1.2x-1.4x的能量。我们还分析了Revamp3D在各种记忆潜伏期中的设计决策,以促进潜伏意见的设计决策。

Recent nano-technological advances enable the Monolithic 3D (M3D) integration of multiple memory and logic layers in a single chip, allowing for fine-grained connections between layers and significantly alleviating main memory bottlenecks. We show for a variety of workloads, on a state-of-the-art M3D-based system, that the performance and energy bottlenecks shift from main memory to the processor core and cache hierarchy. Therefore, there is a need to revisit current designs that have been conventionally tailored to tackle the memory bottleneck. Based on the insights from our design space exploration, we propose RevaMp3D, introducing five key changes. First, we propose removing the shared last-level cache, as this delivers speedups comparable to or exceeding those from increasing its size or reducing its latency across all workloads. Second, since improving L1 cache latency has a large impact on performance, we reduce L1 latency by leveraging an M3D layout to shorten its wires. Third, we repurpose the area from the removed cache to widen and scale up pipeline structures, accommodating more in-flight requests that are efficiently served by M3D memory. To avoid latency penalties from these larger structures, we leverage M3D layouts. Fourth, to facilitate high thread-level parallelism, we propose a new fine-grained synchronization technique, using M3D's dense inter-layer connectivity. Fifth, we leverage the M3D main memory to mitigate the core bottlenecks. We propose a processor frontend design that memoizes the repetitive fetched, decoded, and reordered instructions, stores them in main memory, and turns off the relevant parts of the core when possible. RevaMp3D provides 1.2x-2.9x speedup and 1.2x-1.4x energy reduction compared to a state-of-the-art M3D system. We also analyze RevaMp3D's design decisions across various memory latencies to facilitate latency-aware design decisions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源