论文标题

清除:图形上的生成反事实解释

CLEAR: Generative Counterfactual Explanations on Graphs

论文作者

Ma, Jing, Guo, Ruocheng, Mishra, Saumitra, Zhang, Aidong, Li, Jundong

论文摘要

反事实解释通过回答“如何扰动输入实例以获得所需的预测标签?”来促进机器学习模型中的解释性。在扰动之前和之后的此实例的比较可以增强人类的解释。关于反事实解释的大多数现有研究在表格数据或图像数据中受到限制。在这项工作中,我们研究了图表上反事实解释的问题。一些研究探讨了图表上的反事实解释,但是这个问题的许多挑战仍然没有得到很好的认可:1)在图形的离散和混乱的空间中进行优化; 2)在看不见的图上概括; 3)在没有因果模型的情况下保持生成的反事实的因果关系。为了应对这些挑战,我们提出了一个新颖的框架,旨在在图形级预测模型的图形上产生反事实解释。具体而言,清晰的基于图形自动编码器的机制来促进其优化和泛化,并通过利用辅助变量更好地识别基本因果模型来促进因果关系。关于合成图和现实图表的广泛实验验证了在不同方面的最先进方法的优势。

Counterfactual explanations promote explainability in machine learning models by answering the question "how should an input instance be perturbed to obtain a desired predicted label?". The comparison of this instance before and after perturbation can enhance human interpretation. Most existing studies on counterfactual explanations are limited in tabular data or image data. In this work, we study the problem of counterfactual explanation generation on graphs. A few studies have explored counterfactual explanations on graphs, but many challenges of this problem are still not well-addressed: 1) optimizing in the discrete and disorganized space of graphs; 2) generalizing on unseen graphs; and 3) maintaining the causality in the generated counterfactuals without prior knowledge of the causal model. To tackle these challenges, we propose a novel framework CLEAR which aims to generate counterfactual explanations on graphs for graph-level prediction models. Specifically, CLEAR leverages a graph variational autoencoder based mechanism to facilitate its optimization and generalization, and promotes causality by leveraging an auxiliary variable to better identify the underlying causal model. Extensive experiments on both synthetic and real-world graphs validate the superiority of CLEAR over the state-of-the-art methods in different aspects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源